4.3 Example 3: Tire

This example models a tire. The substructure is created after solving a highly nonlinear prestress problem to account for inflating the tire and giving it a footprint due to contact with the road.

To perform the analysis for the tire:

  1. Enter the following commands to extract the input files from the compressed archive files provided with the Abaqus release:

    abaqus fetch job=adams_ex3A
    abaqus fetch job=adams_ex3A_nodes
    abaqus fetch job=adams_ex3B
    abaqus fetch job=adams_ex3C

  2. You must perform three Abaqus analyses.

    1. Enter the following command to solve an axisymmetric model for the tire inflation:

      abaqus job=adams_ex3A

    2. Enter the following command to create the three-dimensional model of the tire from the axisymmetric model and its results and to calculate the footprint of the tire in contact with the road:

      abaqus job=adams_ex3B oldjob=adams_ex3A

    3. Enter the following command to create the substructure model:

      abaqus job=adams_ex3C oldjob=adams_ex3B

  3. Enter commands to execute the Abaqus Interface for MSC.ADAMS and to create a modal neutral file for use with ADAMS/Flex.

    • On UNIX platforms enter the following commands:

      setenv MDI_MNFWRITE_OPTIONS negative_roots_OK
      abaqus adams job=adams_ex3C
      unsetenv MDI_MNFWRITE_OPTIONS

    • On Windows platforms enter the following commands:

      set MDI_MNFWRITE_OPTIONS=negative_roots_OK
      abaqus adams job=adams_ex3C
      set MDI_MNFWRITE_OPTIONS=

This example extends the discussion of the model described in Symmetric results transfer for a static tire analysis, Section 3.1.1 of the Abaqus Example Problems Manual. The Abaqus analyses of adams_ex3A and adams_ex3B essentially replicate the inflation and footprint analysis of the tire as described in that section. However, a few modifications have been made to adams_ex3B to prepare it for the substructure analysis that follows:

The tire model in its original and deformed states is shown in Figure 4–2 and Figure 4–3.

Figure 4–2 Tire model in the original state.

Figure 4–3 Tire model in the deformed state.

The Abaqus analysis of adams_ex3C restarts from the inflation and footprint analysis of adams_ex3B and consists of the following three steps:

After reorthogonalizing the component modes computed by Abaqus, the Abaqus Interface for MSC.ADAMS reports the eigenvalues and frequencies of the modes it will store in the modal neutral file. As written to the screen during that translation step, the eigenvalues for the first eight modes are shown in Table 4–6.

Table 4–6 Eigenvalues computed by the Abaqus Interface for MSC.ADAMS for the tire, using component modal synthesis with 20 vibration modes and 111 static modes.

Eigenvalue
–3741
–1969
0
0
0
0
3.139E+05
3.289E+05

The Abaqus input files, adams_ex3B.inp and adams_ex3C.inp, are shown below.

adams_ex3B.inp
*heading
 tire superelement w/ symmetric results transfer
 step 0: generate full 3d model using tiretransfer_axi_full
 step 1: equilibrate results
 step 2: footprint analysis (displacement control)
 step 3: footprint analysis (load control)
 units: kg, m
*preprint,model=yes,history=yes
*node,nset=road
 9999,   0.0,   0.0, -0.02
*symmetric model generation,revolve,element=200,node=200
 0.0, 0.0, 0.0,    0.0, 1.0, 0.0
 0.0, 0.0, 1.0
 90.0, 3
 70.0, 3
 15.0, 7
 10.0, 4
 15.0, 7
 70.0, 3
 90.0, 3
*symmetric results transfer,step=1,inc=4
*elset,elset=foot,gen
 1001, 4801, 200
 1002, 4802, 200
 1003, 4803, 200
 1004, 4804, 200
 1005, 4805, 200 
 1007, 4807, 200
 1008, 4808, 200
 1009, 4809, 200
 1010, 4810, 200
 1011, 4811, 200
 1012, 4812, 200
 1014, 4814, 200
*surface,type=cylinder,name=sroad
 0., 0.,-0.31657,   1., 0.,-0.31657
 0., 1.,-0.31657
 start, -0.3, 0.
 line,   0.3, 0.
*rigid body,ref node=9999,analytical surface=sroad
*surface,name=stread
 foot, s3
*contact pair,interaction=srigid
 stread, sroad
*surface interaction,name=srigid
*friction
 0.0
*elset,elset=sect,generate
 2800, 3200, 1
*nset,nset=sect,generate
 2800, 3400, 1
*nset,nset=foot,elset=foot
*nset,nset=noutp,generate
 1055, 5055, 200
*file format,zero increment
**************************************************
*step,inc=100,nlgeom=yes
 1:  inflation
*static, long term
** 0.25, 1.0
1.,1.,1.
*model change, activate
*restart,write,overlay
*boundary
 rim_ref, 1, 6
*dload
belt,p5, 200.e3
side,p5, 200.e3
*node print,nset=road,freq=100
 u,
 rf,
*el print,freq=0
*node file,nset=foot,freq=100
*output,field,freq=100
*element output
 s,le
*node output,nset=foot
 u,
*contact output, var=preselect
*output,history,freq=1
*node output, nset=road
 u, rf
*end step
**************************************************
*step,inc=100,nlgeom=yes
 2:  footprint (displacement controlled)
*static, long term
 0.2, 1.0
*restart,write,overlay
*print,contact=yes
*boundary,op=new
 rim_ref,  1, 6
 road, 1, 2
 road, 4, 6
 road, 3, , 0.02
*node print,nset=road,freq=100
 u,
 rf,
*el print,freq=0
*end step
**************************************************
*step,inc=100,nlgeom=yes
 3:  footprint (load controlled)
*static, long term
 1.0, 1.0
*boundary,op=new
 rim_ref,  1, 6
 road, 1, 2
 road, 4, 6
*cload,op=new
 road, 3, 3300.
*contact print
cdisp,cstress
*end step
**************************************************
adams_ex3C.inp
*heading
 tire superelement w/ symmetric results transfer
 Restart to identify nodes in footprint
 step 4: remove contact constraints
 step 5: extract fixed interface modes
 step 6: generate superelement
 units: kg, m
*preprint,model=yes,history=yes
*restart,read,step=3,write,overlay
*elset,elset=eall
tread,side,belt
**
**************************************************
*nset,nset=footpr,unsorted
**
** This is the list of tire nodes found to be in contact with the 
** road at the end of the previous step.
** (These nodes had status CL in the contact print table.)
**
 1850, 1855, 1905, 2045, 2050, 2055, 2100, 2105, 2245, 2250, 2255, 
 2300, 2305, 2440, 2445, 2450, 2455, 2495, 2500, 2505, 2640, 2645, 
 2650, 2655, 2695, 2700, 2705, 2840, 2845, 2850, 2855, 2895, 2900, 
 2905, 3040, 3045, 3050, 3055, 3095, 3100, 3105, 3240, 3245, 3250, 
 3255, 3295, 3300, 3305, 3440, 3445, 3450, 3455, 3495, 3500, 3505, 
 3640, 3645, 3650, 3655, 3695, 3700, 3705, 3845, 3850, 3855, 3900, 
 3905, 4045, 4050, 4055, 4100, 4105, 4250, 4255, 4305 
**************************************************
*nset,nset=footpr_retnodes
**
** This is the list of nodes in the above footprint that will be 
** retained in the substructure.
**
 1850, 1855, 1905, 2045, 2100, 2440, 2445, 2450, 2455, 2505, 2500, 
 2495, 3040, 3045, 3050, 3055, 3105, 3100, 3095, 3640, 3645, 3650, 
 3655, 3705, 3700, 3695, 4045, 4050, 4105, 4100, 4250, 4255, 4305, 
 2050, 2105
**
**************************************************
*step,inc=1,nlgeom
 4: remove contact constraints
*static
1.,1.
*boundary,fixed,op=new
 rim_ref,1,6
 footpr,1,3
 road,1,6
*model change, type=contact pair, remove
 stread, sroad
**
** Write displacements for all nodes to the results file.
** (Needed so the MNF contains deformed nodal coordinates)
*node file
U,
*end step
**
**************************************************
*step
 5: extract fixed interface modes
*frequency, eigensolver=lanczos
20,
**
*boundary,op=new
 road, 1, 6
 rim_ref,1,6
 footpr,1,3
**
** Write element mass matrices to the results file.
*element matrix output, mass=yes, elset=eall
**
** Write eigenvectors to the results file.
*node file
U,
*end step
**
**************************************************
*step
 6: generate superelement
*substructure generate, type=z101, overwrite,
 recovery matrix=yes, mass matrix=yes
**
*boundary,op=new
 road, 1, 6
*retained nodal dofs, sorted=no
rim_ref,1,6
footpr_retnodes,1,3
*select eigenmodes, generate
1,20,1
*substructure matrix output, stiffness=yes, mass=yes,
 sload=yes, recovery matrix=yes
*end step
**
**************************************************