*HEADING
 test Bergstrom-Boyce hysteresis with temperature dependent elasticity;
 solution after relaxation step should be close to purely hyperelastic run;
 the hourglass stiffness should be twice the purely hyperelastic problem. 
*NODE,NSET=ALL
1,
2,1.
3,1.,1.,
4,0.,1.,
5,0.,0.,1.
6,1.,0.,1.
7,1.,1.,1.
8,0.,1.,1.
*NSET,NSET=FACE1
1,2,3,4
*NSET,NSET=FACE2
5,6,7,8
*NSET,NSET=FACE3
1,2,5,6
*NSET,NSET=FACE4
2,3,6,7
*NSET,NSET=FACE5
3,4,7,8
*NSET,NSET=FACE6
4,1,8,5
*ELEMENT,TYPE=C3D8RH,ELSET=ONE
1,1,2,3,4,5,6,7,8
*SOLID SECTION,ELSET=ONE,MATERIAL=POLY
*MATERIAL,NAME=POLY
*HYPERELASTIC,N=1,MODULI=LONG TERM
80., 20., 0., 0.
75., 18., 0., 20.
70., 16., 0., 40.
*HYSTERESIS
1.0,1.22474e-4,1.0,-1.0
*EXPANSION
0.001,
*STEP,NLGEOM,INC=20,UNSYMM=YES
UNIAXIAL TENSION
*STATIC
1.e-5,1.e-5
*BOUNDARY,OP=NEW
FACE1,3
FACE3,2
FACE6,1
FACE4,1,1,5.
*TEMPERATURE
ALL,40.
*EL PRINT,F=10
S, 
E, 
ener, 
*NODE PRINT,F=10
U,RF
*OUTPUT,FIELD,FREQ=10
*ELEMENT OUTPUT
S,E
ener,
*OUTPUT,FIELD,FREQ=10
*NODE OUTPUT
U,RF
*END STEP
*STEP,NLGEOM,INC=20,UNSYMM=YES
UNIAXIAL TENSION (2)
*STATIC
10.,1.e3
*EL PRINT,F=1000
S, 
E, 
ener, 
*NODE PRINT,F=1000
U,RF
*OUTPUT,FIELD,FREQ=10
*ELEMENT OUTPUT
S,E
ener,
*OUTPUT,FIELD,FREQ=1000
*NODE OUTPUT
U,RF
*END STEP