1.1.23 UCREEPNETWORK
User subroutine to define time-dependent behavior (creep) for models defined within the parallel rheological framework.

Product: Abaqus/Standard  

References

Overview

User subroutine UCREEPNETWORK:

User subroutine interface

     subroutine ucreepnetwork (
C Must be updated
     *   outputData,
C Can be updated
     *   statev,
C Information (Read only)
     *   nOutput,
     *   nstatv,
     *   networkid,
     *   coords,
     *   temp,
     *   dtemp,
     *   nfield,
     *   predef,
     *   dpred,
     *   nprops,
     *   props,
     *   i_array,
     *   niarray,
     *   r_array,
     *   nrarray,
     *   c_array,
     *   ncarray)
C
      include 'aba_param.inc'
C
      parameter( io_creep_equiv_creepinc       = 1,
     *           io_creep_deqcreepinc_deqcreep = 2,
     *           io_creep_deqcreepinc_dqtild   = 3,
     *           io_creep_deqcreepinc_dinv1crp = 4 )
C
      parameter( i_creep_kstep   = 1,
     *           i_creep_kinc    = 2,
     *           i_creep_noel    = 3,
     *           i_creep_npt     = 4,
     *           i_creep_layer   = 5,
     *           i_creep_kspt    = 6,
     *           i_creep_lend    = 7 )
C
      parameter( ir_creep_step_time  = 1,
     *           ir_creep_total_time = 2,
     *           ir_creep_creep_time = 3,
     *           ir_creep_timeinc    = 4,
     *           ir_creep_equiv_creep_strain = 5,
     *           ir_creep_qtild        = 6,
     *           ir_creep_inv1crp      = 7 )
C
      parameter( ic_creep_material_name = 1 )
C
      dimension 
     *   statev(nstatv),
     *   predef(nfield),
     *   dpred(nfield),
     *   coords(*),
     *   props(nprops),
     *   outputData(nOutput),
     *   i_array(niarray),
     *   r_array(nrarray)

      character*80 c_array(ncarray)
C
      user coding to define outputData(io_creep_equiv_creepinc),
						outputData(io_creep_deqcreepinc_deqcreep),
						outputData(io_creep_deqcreepinc_dqtild) and 
 					outputData(io_creep_deqcreepinc_dinv1crp)

      return
      end

Variables to be defined

outputData(io_creep_equiv_creepinc)

Equivalent creep strain increment, .

outputData(io_creep_deqcreepinc_deqcreep)

The derivative: .

outputData(io_creep_deqcreepinc_dqtild)

The derivative: .

outputData(io_creep_deqcreepinc_dinv1crp)

The derivative: .

Variable that can be updated

statev

An array containing the user-defined solution-dependent state variables at this point.

Variables passed in for information

nOutput

Size of array outputData. Currently equal to 4.

nstatv

Number of solution-dependent state variables associated with this material.

networkid

Network identification number, which identifies the network for which creep is defined.

coords

An array containing the current coordinates at this point.

temp

Temperature at the end of the increment.

dtemp

Increment of temperature.

nfield

Number of field variables.

predef

An array of interpolated values of predefined field variables at this point at the end of the increment, based on the values read in at the nodes and, optionally, redefined in user subroutine USDFLD.

dpred

An array of increments of predefined field variables.

nprops

User-specified number of property values associated with this creep model.

props

An array of user-specified property values that are used to define the creep model.

i_array(i_creep_kstep)

Step number.

i_array(i_creep_kinc)

Increment number.

i_array(i_creep_noel)

Element number.

i_array(i_creep_npt)

Integration point.

i_array(i_creep_layer)

Layer number (for layered solids).

i_array(i_creep_kspt)

Section point number within the current layer.

i_array(i_creep_lend)

Start/end of increment flag. The value of 0 denotes the beginning of the increment, and the value of 1 denotes the end of the increment.

niarray

Size of array i_array. Currently equal to 7.

r_array(ir_creep_step_time)

Value of step time at the end of the increment.

r_array(ir_creep_total_time)

Value of total time at the end of the increment.

r_array(ir_creep_creep_time)

Value of creep time at the end of the increment.

r_array(ir_creep_timeinc)

Time increment.

r_array(ir_creep_equiv_creep_strain)

Equivalent creep strain.

r_array(ir_creep_qtild)

Equivalent deviatoric Kirchhoff stress.

r_array(ir_creep_inv1crp)

The first invariant, , of the right Cauchy-Green creep strain tensor, .

nrarray

Size of array r_array. Currently equal to 7.

c_array(ic_creep_material_name)

User-specified material name, left justified. Some internal material models are given names starting with the “ABQ_” character string. To avoid conflict, you should not use “ABQ_” as the leading string for the material name.

ncarray

Size of array c_array. Currently equal to 1.

Example: Bergstrom-Boyce model

As an example of the coding of user subroutine UCREEPNETWORK, consider the Bergstrom-Boyce model. In this case the equivalent creep strain rate is expressed as (see Parallel rheological framework, Section 22.8.2 of the Abaqus Analysis User's Guide)

where

and

is the right Cauchy-Green creep strain tensor,

is the equivalent deviatoric Kirchhoff stress, and

A, m, C, and E

are material parameters.

The user subroutine would be coded as follows:

     subroutine ucreepnetwork (
C Must be updated
     *   outputData,
C Can be updated 
     *   statev,
C Information (Read only)
     *   nOutput,
     *   nstatv,
     *   networkid,
     *   coords,
     *   temp,
     *   dtemp,
     *   nfield,
     *   predef,
     *   dpred,
     *   nprops,
     *   props,
     *   i_array,
     *   niarray,
     *   r_array,
     *   nrarray,
     *   c_array,
     *   ncarray)
C
      include 'aba_param.inc'
C
      parameter( io_creep_equiv_creepinc       = 1,
     *           io_creep_deqcreepinc_deqcreep = 2,
     *           io_creep_deqcreepinc_dqtild   = 3,
     *           io_creep_deqcreepinc_dinv1crp = 4 )
C
      parameter( i_creep_kstep   = 1,
     *           i_creep_kinc    = 2,
     *           i_creep_noel    = 3,
     *           i_creep_npt     = 4,
     *           i_creep_layer   = 5,
     *           i_creep_kspt    = 6,
     *           i_creep_lend    = 7 )
C
      parameter( ir_creep_step_time  = 1,
     *           ir_creep_total_time = 2,
     *           ir_creep_creep_time = 3,
     *           ir_creep_timeinc    = 4,
     *           ir_creep_equiv_creep_strain = 5,
     *           ir_creep_qtild        = 6,
     *           ir_creep_inv1crp      = 7 )
C
      parameter( ic_creep_material_name = 1 )
C
C model parameters
      parameter ( zero=0.0d0,half=0.5d0,one=1.0d0,two=2.0d0,
     &     three=3.0d0,five=5.0d0,six=6.0d0 )
C
      dimension 
     *   statev(nstatv),
     *   predef(nfield),
     *   dpred(nfield),
     *   coords(*),
     *   props(nprops),
     *   outputData(nOutput),
     *   i_array(niarray),
     *   r_array(nrarray)

      character*80 c_array(ncarray)
C
C Bergstrom-Boyce Model
C
      A  = props(1)
      dm = props(2)
      C  = props(3)
      E  = props(4)
C
      dI1    = r_array(ir_creep_inv1crp)
      dLamb  = (dI1/three)**half
      sigmaB = r_array(ir_creep_qtild)
      dt     = r_array(ir_creep_timeinc)
C
C deq
      deq = dt*A*(dLamb-one+E)**C*sigmaB**dm
C
C d(deq)/(dI1crp)
      deqdi1 = deq*C/(dLamb-one+E)/dLamb/six
C
C d(eq)/d(eq)
      deqeq = zero
C
C d(eq)/d(q)
      deqdq = dm*dt*A*(dLamb-one+E)**C*sigmaB**(dm-one)
C
C set output
      outputData(io_creep_equiv_creepinc)       = deq
      outputData(io_creep_deqcreepinc_deqcreep) = deqeq
      outputData(io_creep_deqcreepinc_dqtild)   = deqdq
      outputData(io_creep_deqcreepinc_dinv1crp) = deqdi1
C
      return
      end